Product of derivations on C$^*$-algebras

Authors

  • Hamid Reza Ebrahimi Vishki Department of Pure Mathematics and Center of Excellence in Analysis on Algebraic Struc-tures (CEAAS), Ferdowsi University of Mashhad,
  • Madjid Mirzavaziri Department of Pure Mathematics and Center of Excellence in Analysis on Algebraic Struc-tures (CEAAS), Ferdowsi University of Mashhad
Abstract:

Let $mathfrak{A}$ be an algebra. A linear mapping $delta:mathfrak{A}tomathfrak{A}$ is called a textit{derivation} if $delta(ab)=delta(a)b+adelta(b)$ for each $a,binmathfrak{A}$. Given two derivations $delta$ and $delta'$ on a $C^*$-algebra $mathfrak A$, we prove that there exists a derivation $Delta$ on $mathfrak A$ such that $deltadelta'=Delta^2$ if and only if either $delta'=0$ or $delta=sdelta'$ for some $sinmathbb{C}$.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

product of derivations on c$^*$-algebras

let $mathfrak{a}$ be an algebra. a linear mapping $delta:mathfrak{a}tomathfrak{a}$ is called a textit{derivation} if $delta(ab)=delta(a)b+adelta(b)$ for each $a,binmathfrak{a}$. given two derivations $delta$ and $delta'$ on a $c^*$-algebra $mathfrak a$, we prove that there exists a derivation $delta$ on $mathfrak a$ such that $deltadelta'=delta^2$ if and only if either $delta'=0$...

full text

DERIVATIONS OF TENSOR PRODUCT OF SIMPLE C*-ALGEBRAS

In this paper we study the properties of derivations of A B, where A and B are simple separable C*-algebras, and A B is the C*-completion of A B with respect to a C*-norm Yon A B and we will characterize the derivations of A B in terms of the derivations of A and B

full text

Local higher derivations on C*-algebras are higher derivations

Let $mathfrak{A}$ be a Banach algebra. We say that a sequence ${D_n}_{n=0}^infty$ of continuous operators form $mathfrak{A}$ into $mathfrak{A}$ is a textit{local higher derivation} if to each $ainmathfrak{A}$ there corresponds a continuous higher derivation ${d_{a,n}}_{n=0}^infty$ such that $D_n(a)=d_{a,n}(a)$ for each non-negative integer $n$. We show that if $mathfrak{A}$ is a $C^*$-algebra t...

full text

Lie $^*$-double derivations on Lie $C^*$-algebras

A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

full text

derivations of tensor product of simple c*-algebras

in this paper we study the properties of derivations of a b, where a and b are simple separable c*-algebras, and a b is the c*-completion of a b with respect to a c*-norm yon a b and we will characterize the derivations of a b in terms of the derivations of a and b

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 2

pages  109- 114

publication date 2016-12-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023